DELOREAN

JURISDICTION: CITY OF MILLERSBURG, OR LOCATION: OLD SALEM RD NE, SOUTH OF CONSER RD NE

Prepared by:

January 2024
090147000
Copyright © Kimley-Horn and Associates, Inc.

Kimley»"Horn

TRAFFIC IMPACT ANALYSIS

FOR

DELOREAN

Prepared by:

Kimley-Horn and Associates, Inc.
2828 Colby Avenue
Suite 200
Everett, Washington 98201
(425) 708-8275

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by KimleyHorn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.
© January 2024 090147000

Kimley»"Horn

Table of Contents

1. DEVELOPMENT IDENTIFICATION 1
1.1. Scoping of Analysis 1
2. Methodology 3
3. Trip Generation 4
4. TRIP DIStRIBUTION 4
5. Intersection Level of Service Analysis 7
4.1. Seasonal Adjustment Factor 7
4.2. Turning Movement Calculations 8
4.3. Level of Service Calculations 12
6. CONCLUSIONS 12
LIST OF FIGURES
Figure 1: Site Vicinity Map 2
Figure 2: Development Trip Distribution -AM Peak-Hour 5
Figure 3: Development Trip Distribution -PM Peak-Hour 6
Figure 4: 2023 Existing Turning Movements - PM Peak-Hour 9
Figure 5: 2025 Baseline Turning Movements - PM Peak-Hour 10
Figure 6: 2025 Future with Development Turning Movements - PM Peak-Hour 11
List of Tables
Table 1: Level of Service Criteria 3
Table 2. Trip Generation Summary 4
Table 3. Seasonal Adjustment Factor (ATR \#22-005, North Albany) 7
Table 4: Level of Service Summary - PM Peak Hour 12
List of Appendices
Trip Generation A
Existing Count Data and Growth Data B
Pipeline Project Data C
TURNING Movements. D
Level of Service Calculations. E

Kimley»)Horn

1. Development Identification

Kimley-Horn and Associates, Inc. (Kimley-Horn) has been retained to analyze the traffic impacts of the proposed Delorean Development (Development). This report is intended to provide the City of Millersburg (City) and Oregon Department of Transportation (ODOT) with the necessary traffic generation, trip distribution, and level of service analysis to facilitate their review of the Development. Brad Lincoln, responsible for this report and traffic analysis, is a licensed professional engineer (Civil) in the State of Oregon.

The Development is proposed to include a 500,000 square foot (SF) manufacturing warehouse. The Development is located west of Old Salem Road NE and south of Conser Road NE. A site vicinity map is included in Figure 1. The site will access the City street network via two proposed access drives, one near the north side of the building that will connect with a new roadway that currently provides access to the fire station and one access to the south of the site to connect directly to Old Salem Road NE.

1.1. Scoping of Analysis

The analysis has been performed for the 2023 existing, 2025 baseline, and 2025 future with development conditions to account for full build-out of the site. The level of service analysis has been performed at the following intersections during the PM peak-hour:

- Old Salem Road NE at NE Transition Parkway
- Old Salem Road NE at Conser Road NE

Kimley»>Horn

1. Methodology

Trip generation for the Development is based on national data contained in Trip Generation Manual, $11^{\text {th }}$ Edition (2021) by the Institute of Transportation Engineers (ITE). The average rates for Land Use Code (LUC) 140, Manufacturing, have been used in the trip generation calculations. The distribution of trips generated by the site is based on existing traffic volumes and surrounding land uses.

Congestion at intersections and along roadway is generally measured in terms of level of service (LOS). In accordance with Highway Capacity Manual (HCM), $6^{\text {th }}$ Edition by the Transportation Research Board, road facilities and intersections are rated between LOS A and LOS F, with LOS A being free flow and LOS F being forced flow or over-capacity conditions. The LOS at signalized, roundabout, and all-way stopcontrolled intersections is based on the average delay of all approaches. The LOS for two-way stopcontrolled intersections is based on average delays for the critical stopped approach. Geometric characteristics and conflicting traffic movements are taken into consideration when determining LOS values. A summary of the intersection LOS criteria is included in Table 1.

Table 1: Level of Service Criteria

Level of Service ${ }^{1}$	Intersection Control Delay (Seconds per Vehicle)		
		Signalized Intersections	
		Unsignalized Intersections	≤ 10
A	Little/No Delay	>10 and ≤ 15	>10 and ≤ 20
B	Short Delays	>15 and ≤ 25	>20 and ≤ 35
C	Average Delays	>25 and ≤ 35	>35 and ≤ 55
D	Long Delays	>35 and ≤ 50	>55 and ≤ 80
E	Very Long Delays	>50	>80
F	Extreme Delays ${ }^{2}$		

The City of Millersburg's Transportation System Plan (TSP) states mobility targets would be applicable to roads owned by the City and are based on LOS D or better for signalized intersections and unsignalized intersections. County facilities within the City of Millersburg will be required to meet Linn County mobility targets, which are currently under review as part of the Linn County TSP update process. At the time the Millersburg TSP was updated in April 2023, Linn County had established a goal of maintaining LOS D or better throughout the county-owned arterial and collector system for the planning horizon.
${ }^{1}$ Source: Highway Capacity Manual, G $^{\text {th }}$ Edition.
LOS A: Free-flow traffic conditions, with minimal delay to stopped vehicles (no vehicle is delayed longer than one cycle at signalized intersection).
LOS B: Generally stable traffic flow conditions.
LOS C: Occasional back-ups may develop but delay to vehicles is short term and still tolerable.
LOS D: During short periods of the peak hour, delays to approaching vehicles may be substantial but are tolerable during times of less demand (i.e., vehicles delayed one cycle or less at signal).
LOS E: Intersections operate at or near capacity, with long queues developing on all approaches and long delays. LOS F: Jammed conditions on all approaches with excessively long delays and vehicles unable to move at times. ${ }^{2}$ When demand volume exceeds the capacity of the lane, extreme delays will be encountered with queuing which may cause severe congestion affecting other traffic movements in the intersection.

Kimley»Horn

2. Trip Generation

Trip generation calculations for the proposed Development have been performed using the ITE Trip Generation Manual, $11^{\text {th }}$ Edition (2021). The average rates for ITE Land Use Code 140, Manufacturing, have been used for the trip generation calculations. The trips generated by the Development are summarized in Table 2.

Table 2: Trip Generation Summary

Manufacturing 500,000 SF	Average Daily Trips (ADTs)			AM Peak-Hour Trips			PM Peak-Hour Trips		
	In	Out	Total	In	Out	Total	In	Out	Total
Generation Rate	4.75 trips per 1,000 SF			0.68 trips per 1,000 SF			0.74 trips per 1,000 SF		
Splits	50\%	50\%	100\%	76\%	24\%	100\%	31\%	69\%	100\%
Trips	1,188	1,187	2,375	258	82	340	115	255	370

The Development is anticipated to generate approximately 2,375 ADTs with approximately 340 AM peakhour trips and approximately 370 PM peak-hour trips. The trip generation calculations are provided in Appendix A.

3. Trip Distribution

The distribution of trips generated by the Development is primarily based on following existing traffic patterns and surrounding land uses. The trip distribution is:

- 75% to and from the south along Old Salem Road NE
- 25% to and from the north along Old Salem Road NE

A detailed trip distribution for the AM peak-hour and PM peak-hours is displayed in Figure 2 and Figure 3, respectively.

Kimley»Horn

Kimley»)Horn

4. Intersection Level of Service Analysis

The following intersections have been analyzed as part of this report:

- Old Salem Road NE at NE Transition Parkway
- Old Salem Road NE at Conser Road NE

The intersections have been analyzed for the weekday PM peak-hours.

4.1. Seasonal Adjustment Factor

The 2023 existing traffic counts were modified to current $30^{\text {th }}$ highest hourly volume (30 HV) conditions by applying a seasonal adjustment factor consistent with ODOT's Analysis Procedures Manual (APM). The seasonal adjustment factor was calculated using data collect at Automatic Tracking Recorder (ATR) \#22005 , North Albany. ATR \#22-005 is located along I-5, 0.41 miles north of Albany-Junction City Highway No. 58.

Historical data at ATR \#22-005 was analyzed to determine the peak-month beginning in 2018 through 2022. Within this five-year span, the ADT values were consistently higher than average weekday traffic (AWT). ADT was therefore used to determine the seasonal factors for ATR \#22-005. The month of August had the highest ADT for four of five years of data. The month of August was therefore used when calculating seasonal adjustment factors for ATR \#22-005. Following the APM process, the highest and lowest monthly percentages, highlighted in gray in Table 3 below, were eliminated from the five-year historical data when calculating the average. The remaining three years of data were used to calculate the peak-month average for the five-year time period.

Counts were collected on November 8, 2023, and ATR data is reported for the $15^{\text {th }}$ of each month. Therefore, the ADT values are near the mid-month data usually reported and thus no interpolation was used to calculate the ADT for November. The monthly percent of annual average daily traffic (AADT) for the peak-month of August and count month of November are shown in Table 3.

Table 3: Seasonal Adjustment Factor (ATR \#22-005, North Albany)

Year	2018	2019	2020	2021	2022	Average
Peak-Month (August)	110	110	114	111	109	110.33
Count Month (November)	98	98	98	102	97	98.00

For ATR \#22-005, the average peak-month volume was 110.33 and the average count month volume was 98.00. This results in a seasonal factor of 1.13 , calculated by dividing the peak-month average by the count month average.

The seasonal factor of 1.13 from ATR \#33-005 was applied to all existing peak-hour turning movement volumes to maintain the most conservative adjustment at the study intersections.

Kimley»"Horn

4.2. Turning Movement Calculations

The existing PM peak-hour turning movements at the study intersections were collected by the independent count firm IDAX in November 2023. The seasonal factor of 1.13 from ATR \#22-005 was applied to all existing peak-hour turning movement volumes to maintain the most conservative adjustment at the study intersections. The 2023 existing turning movements at the study intersections after the seasonal adjustment factors have been applied are shown in Figure 4. The existing count data is included in Appendix B.

The year 2025 was used to forecast future volume projections based on the anticipated completion of the Development. The 2025 baseline turning movements have been calculated by applying a 1.5% annually compounding growth rate to the 2023 existing turning movements. This 1.5% growth rate is based on the annual average daily trips (AADT) collected from existing permanent counters within the Oregon Traffic Monitoring System along Old Salem Road NE, Conser Road NE, and Alexander Lane NE. Additionally, pipeline data from the following pipeline developments:

- Agribusiness Millersburg Site
- Gordon Truck Center

The permanent counter data is included with the existing count data in Appendix \mathbf{B}. The pipeline projects peak-hour data are provided in Appendix C. The 2025 baseline turning movements at the study intersections are shown in Figure 5.

The 2025 future with development turning movements at the study intersections have been calculated by adding the trips generated by the Development to the 2025 baseline turning movements. The 2025 future with development turning movements are shown in Figure 6. The turning movement calculations are included in Appendix D. It is important to note that the trips generated by the Development during the PM peak-hour are primarily anticipated to travel to and from the north access. The south access to Old Salem Road is proposed to only be used by trucks and there are only anticipated to be 50 truck trips during the day shift. There is not anticipated to be a significant volume of truck trips at the southern access during the PM peak-hour.

Kimley»"Horn

4.3. Level of Service Calculations

The 2023 existing LOS calculations have been performed using the existing channelization, existing intersection control, and peak-hour factors and heavy vehicle factors from the 2023 turning movement counts. These parameters have been used for the 2023 existing, 2025 baseline, and 2025 future with development conditions. The LOS summary for the PM peak-hour is included in Table 4.

Table 4: Level of Service Summary - PM Peak Hour

Intersection	Control	2023 Existing Conditions		2025 Baseline Conditions		2025 Future w. Development Conditions	
		LOS	Delay Approach	LOS	$\begin{aligned} & \text { Delay } \\ & \text { Approach } \end{aligned}$	LOS	$\begin{gathered} \text { Delay } \\ \text { Approach } \end{gathered}$
1. Old Salem Road NE at NE Transition Parkway	Two-Way Stop Control	B	$\begin{gathered} 14.5 \mathrm{sec} \\ \mathrm{WB} \end{gathered}$	C	$15.6 \mathrm{sec}$	D	$\begin{gathered} 27.0 \mathrm{sec} \\ \text { WB } \end{gathered}$
2. Old Salem Road NE at Conser Road NE	Two-Way Stop Control	B	$\begin{gathered} 13.6 \mathrm{sec} \\ \mathrm{~EB} \end{gathered}$	C	$\begin{gathered} 18.9 \mathrm{sec} \\ \text { EB } \end{gathered}$	C	$\begin{gathered} 21.1 \mathrm{sec} \\ \text { EB } \end{gathered}$

The analysis shows all study intersections currently operate at acceptable levels of service and are anticipated to continue operating at acceptable level of service standards under the baseline and future with development conditions. It should be noted that the eastbound movement for the intersection of Old Salem Road NE at Conser Road NE has been used to evaluate the operations of the intersection. The westbound approach technically has a higher delay, but there are a limited number of trips that use that dead-end section and there are not anticipated to be any trips generated by the Development that will travel along Conser Road NE east of Old Salem Road. The intersection LOS calculations are provided in the

Appendix E.

5. Conclusions

The Development is proposed to include a 500,000 SF manufacturing warehouse. The Development is located west of Old Salem Road NE, south of Conser Road NE The Development is anticipated to generate approximately 2,375 ADTs with approximately 340 AM peak-hour trips and approximately 370 PM peakhour trips. The study intersections currently operate acceptably and are anticipated to operate at acceptable levels of service under the 2025 future with development conditions. Additional fees beyond standard System Development Charges (SDC) for future improvements should not be a condition of payment for the Development.

Kimley»"Horn

APPENDIX A

Trip Generation

									NET EXTERNAL TRIPS BY TYPE															
			Gross Trips						IN BOTH DIRECTIONS						DIRECTIONAL ASSIGNMENTS									
			Internal Crossover	TOTAL	PASS-BY		DIVERTED LINK		NEW	PASS-BY		DIVERTED LINK		NEW										
LAND USES	VARIABLE	$\begin{gathered} \hline \text { ITE } \\ \text { LU } \\ \text { code } \end{gathered}$					Trip Rate	$\begin{aligned} & \text { \% } \\ & \text { IN } \end{aligned}$	$\begin{gathered} \% \\ \text { OUT } \end{gathered}$	$\begin{aligned} & \text { In+Out } \\ & \text { (Total) } \end{aligned}$	\% of Gross Trips	$\begin{aligned} & \hline \text { Trips } \\ & \text { In+Out } \\ & \text { (Total) } \\ & \hline \end{aligned}$	In+Out (Total)	$\begin{gathered} \hline \% \text { of } \\ \text { Ext. } \\ \text { Trips } \\ \hline \end{gathered}$	$\begin{gathered} \text { In+Out } \\ \text { (Total) } \end{gathered}$	$\begin{aligned} & \hline \% \text { of } \\ & \text { Ext. } \\ & \text { Trips } \\ & \hline \end{aligned}$	In+Out (Total)	In+Out (Total)	In	Out	In	Out	In	Out
Manufacturing	500.000 K SF	140	4.75	50\%	50\%	2375	0\%	0	2375	0\%	0	0\%	0	2375	0	0	0	0	1188	1187				
Total						2375		0	2375		0		0	2375	0	0	0	0	1188	1187				

Trip Generation for: Weekday, Peak Hour of Adjacent Street Traffic, One Hour between 7 and 9 AN

									NET EXTERNAL TRIPS BY TYPE															
			Gross Trips				Internal Crossover		IN BOTH DIRECTIONS						DIRECTIONAL ASSIGNMENTS									
			TOTAL	PASS-BY		DIVERTED LINK		NEW	PASS-BY		DIVERTEDLINK		NEW											
LAND USES	VARIABLE	$\begin{array}{\|c\|} \hline \text { ITE } \\ \text { LU } \\ \text { code } \end{array}$					Trip Rate	$\begin{aligned} & \% \\ & \text { IN } \end{aligned}$	$\begin{gathered} \text { \% } \\ \text { OUT } \end{gathered}$	In+Out (Total)	\% of Gross Trips	Trips In+Out (Total)	In+Out (Total)	\% of Ext. Trips	In+Out (Total)	\% of Ext. Trips	In+Out (Total)	In+Out (Total)	In	Out	In	Out	In	Out
Manufacturing	500.000 K SF	140	0.68	76\%	24\%	340			0\%	0	340	0\%	0	0\%	0	340	0	0	0	0	258	82		
Total						340		0	340		0		0	340	0	0	0	0	258	82				

Trip Generation for: Weekday, Peak Hour of Adjacent Street Traffic, One Hour between 4 and 6 PN

			Gross Trips				Internal Crossover		NET EXTERNAL TRIPS BY TYPE															
			IN BOTH DIRECTIONS	DIRECTIONAL ASSIGNMENTS																				
			TOTAL	PASS-BY		DIVERTED LINK		NEW	PASS-BY		DIVERTEDLINK		NEW											
LAND USES	VARIABLE	$\begin{array}{\|c\|} \hline \text { ITE } \\ \text { LU } \\ \text { code } \end{array}$					Trip Rate	$\begin{aligned} & \% \\ & \text { IN } \end{aligned}$	$\begin{gathered} \% \\ \text { OUT } \end{gathered}$	In+Out (Total)	\% of Gross	$\begin{aligned} & \hline \text { Trips } \\ & \text { In+Out } \\ & \text { (Total) } \\ & \hline \end{aligned}$	In+Out (Total)	$\begin{aligned} & \hline \% \text { of } \\ & \text { Ext. } \\ & \text { Trips } \\ & \hline \end{aligned}$	$\begin{gathered} \text { In+Out } \\ \text { (Total) } \end{gathered}$	$\begin{aligned} & \hline \% \text { of } \\ & \text { Ext. } \\ & \text { Trips } \\ & \hline \end{aligned}$	In+Out (Total)	In+Out (Total)	In	Out	In	Out	In	Out
Manufacturing	500.000 K SF	140					0.74	31\%	69\%	370	0\%	0	370	0\%	0	0\%	0	370	0	0	0	0	115	255
Total						370				0	370		0		0	370	0	0	0	0	115	255		

Kimley»"Horn

APPENDIX B

Existing Count Data and Growth Data

Kimley»Horn

Kimley»"Horn

APPENDIX C

Pipeline Project Data

AGRIBUSINESS MILLERSBURG SITE TRAFFIC IMPACT ANALYSIS

September 30, 2022

mobley

EXPIRES: 06/30/2025

Gordon Truck Center

 Transportation Impact StudyMillersburg, Oregon
Date:
May 24, 2023

Prepared for:
Dominic Nicandri
Gordon Truck Center, Inc

Prepared by:
Daniel Stumpf, PE
Ken Kim, PE

EXISTING
CONDITION

VICINITY/SITE TRIP/TRAFFIC VOLUME
2023 Existing, 2025 Background, \& 2025 Buildout Conditions

BACKGROUND

BUILDOUT
CONDTION

Kimley»"Horn

APPENDIX D

Turning Movements

Kimley»"Horn

APPENDIX E

Level of Service Calculations

HCM 6th TWSC
2: Old Salem Road NE \& Conser Road NE

Intersection												
Int Delay, s/veh	2.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$		「	${ }^{1}$		F	${ }^{7}$	F		${ }^{*}$	\uparrow	
Traffic Vol, veh/h	9	0	75	8	0	5	149	398	2	1	393	11
Future Vol, veh/h	9	0	75	8	0	5	149	398	2	1	393	11
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Stop	-	-	Stop	-	-	None	-	-	None
Storage Length	50	-	0	0	-	25	100	-	-	50	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	10	0	80	9	0	5	159	423	2	1	418	12

Intersection												
Int Delay, s/veh 0.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	\uparrow			\leqslant		${ }^{7}$	\uparrow		${ }^{7}$	\uparrow	
Traffic Vol, veh/h	1	0	1	3	0	3	1	607	0	0	567	2
Future Vol, veh/h	1	0	1	3	0	3	1	607	0	0	567	2
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	175	-	-	-	-	-	50	-	-	50	-	-
Veh in Median Storage, \#	\#	1	-	-	1	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	0	1	3	0	3	1	660	0	0	616	2

HCM 6th TWSC
2: Old Salem Road NE \& Conser Road NE

Intersection												
Int Delay, s/veh	4.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$		「	${ }^{1}$		F	${ }^{7}$	F		${ }^{*}$	\uparrow	
Traffic Vol, veh/h	31	0	144	8	0	5	184	417	2	1	417	22
Future Vol, veh/h	31	0	144	8	0	5	184	417	2	1	417	22
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Star	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Stop	-	-	Stop	-	-	None	-	-	None
Storage Length	50	-	0	0	-	25	100	-	-	50	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	33	0	153	9	0	5	196	444	2	1	444	23

HCM 6th TWSC
2: Old Salem Road NE \& Conser Road NE

Intersection												
Int Delay, s/veh	4.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$		「	${ }^{1}$		F	${ }^{7}$	F		${ }^{*}$	\uparrow	
Traffic Vol, veh/h	31	0	144	8	0	5	184	481	2	1	446	22
Future Vol, veh/h	31	0	144	8	0	5	184	481	2	1	446	22
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Star	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	Stop	-	-	Stop	-	-	None	-	-	None
Storage Length	50	-	0	0	-	25	100	-	-	50	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, \%	3	3	3	3	3	3	3	3	3	3	3	3
Mvmt Flow	33	0	153	9	0	5	196	512	2	1	474	23

