City of Millersburg DECISION

April 5, 2024

Proposal: The applicant is proposing a minor modification to an approved communictaions facility permit, last modified in 2001, by co-locating 6 new antennas to an existing cell tower and to build an additional equipment shelter within the existing lease area.

## I. BACKGROUND

A. Applicant: Vinh Dinh for ATC and T Mobile
B. Location: 3025 NE Kathryn Street
C. Review Type: The proposed Site Development Review Minor Modification, pursuant to the Development Code section 5.16.060, requires a Type I permit. A Type I permit is a staff level, ministerial review, and does not require a hearing or public notice. The Development Code explains that the Planning Director has the ability to determine if a Site Development Minor Modification requires a Type I or Il process. Staff has elected to use the Type I review because the proposal will have no impacts on any neighbors. The difference between a major and minor modification is discussed below in more detail.
D. Public Notice and Hearing: No notice is required for a Type I permit.
E. Review Criteria: Chapter 5.16.060 Modifications to approved plans and conditions.
F. Current Zoning: Light Industrial (LI)
G. Proposed Zoning: N/A
H. Property Size: The communications facilities are on a leased portion of a property that also features a warehouse. The entire site is 2.93 acres. The leased area is 2,500 square feet.
I. Background: The site currently features two approved communications towers and two equipment shelters. T Mobile is proposing to add service to one of the existing towers by adding a new array of 6 antennas, located 5 feet below the existing array. The site is located behind an existing warehouse and is generally not visible by any residential area. The proposal will not make the existing tower any taller. The proposal will add a new shelter to the site, to house T Mobile equipment, however, that will not be visible from any public right of way. The same project was submitted to the City and approved as SP 22-01 in 2022, but the entitlement expired. The 2024 submitted application differs slightly from the version that was approved by the City in 2022, but is substantially the same.

## II. AFFECTED AGENCY, PUBLIC NOTICE, AND PUBLIC COMMENTS

## Agencies:

The applicant's Site Development Review modification did not have any impacts to other agencies.

Public:
No notice is required.

## III. CRITERION

CITY OF MILLERSBURG DEVELOPMENT CODE
The applicable CUP criterion are from Code Section 5.16.060. All analysis and findings below are in addition to those provided by the applicant, which are included by reference.
5.16.060 Modifications to Approved Plans and Conditions.
(2) Applicability. This Section applies when an applicant proposes to modify an approved application or condition of approval.

ANALYSIS: The applicant is proposing to add a new array of 6 antennas to an existing communications tower and to add a new equipment shelter to the existing lease area.

FINDINGS: The proposal meets the qualifications above and is therefore considered a modification to approved plans.
(3) Major Modification. The Planning Commission reviews applications for major modifications through the Type III procedure under Section 5.19. Any one of the following changes constitutes a major modification:
a. A change in land use, from a less intensive use to a more intensive use, as evidenced by parking, paved area, an estimated increase in automobile or truck trips (peak and/or average daily trips), an increase in hours of operation, an increased demand for parking, additional paved area, or similar factors, where the increase is 10 percent or more, provided the standards of Article II and Article III are met;
b. A reduction in required setbacks, or an increase in lot coverage, by 10 percent or more, provided the standards of Article II and Article III are met;
c. A change in the type and/or location of vehicle access points or approaches, driveways, or parking areas affecting off-site traffic when the roadway authority determines the change could cause a significant adverse impact on traffic operations or safety (i.e., requiring mitigation);
d. A reduction to screening, or a reduction to the area reserved for common open space or landscaping by 10 percent or more;
e. Change to a condition of approval, or a change similar to subsections a-d, above, that could have a detrimental impact on adjoining properties. The City Manager shall have discretion in determining detrimental impacts triggering a major modification; or
f. Other changes similar to those in subsections a-e, above, in scale, magnitude, or impact to adjacent properties, as determined by the City Manager.
ANALYSIS: The proposed modifications do not qualify as a major modification. The proposal is not changing land uses. The proposal will intensify the use of the site because it will add more antennas and equipment; however, subsection a above specifically lists the kinds of impacts that qualify as triggering a major modification. The entre communications facility is not open to the public and is unmanned except for occasional maintenance. Therefore, the additional equipment will not result in more traffic at the location of the site, additional operating hours, or more parking need. The equipment may result in an intensification of more than $10 \%$ of the existing use (measured in terms of equipment), however the nature of the project is such that the change will not increase human interaction to a level that would trigger a major modification. There are no requests for a reduction in any setbacks or access. No screening was, or is, needed due to the location of the facility behind a warehouse. No condition of approval changes are requested. Finally, the proposal will not have an impact in scale or magnitude that will impact or effect the neighbors in any way.
FINDINGS: The proposal does not meet the qualifications above for a major modification and, therefore, qualifies as a minor modification.
(4) Major Modification Applications. Applications for modifications to approved plans shall include a description of the approved project proposed for changes, the proposed changes, the existing conditions, a site plan, information on any existing and any proposed restrictions or covenants, and the same information required in Section 5.06.040. An application for modifications to approved plans shall also contain a narrative report or letter responding to the applicable approval criteria.

FINDINGS: This section does not apply.
(5) Major Modification Approval Criteria. Requests for major modifications shall conform to all of the following procedures and criteria:
a. The application shall be subject to the same approval criteria used for the initial project approval; except that a modification adding a conditional use to a project approved without a conditional use shall require findings in conformance with Section 5.04.050;
b. The scope of review shall be limited to the modification request. For example, a request to modify a commercial development's parking lot shall require site design review only for the proposed parking lot and any changes to associated access, circulation, etc.; and
c. The Planning Commission shall approve, deny, or approve with conditions an application for major modification based on written findings on the applicable Code criteria.

FINDINGS: This section does not apply.
(6) Minor Modification. The Planning Director through a Type I or II procedure, depending on whether the proposal involves the exercise of discretion, shall review proposals for minor modifications. Minor modifications include technical corrections to comply with codes and regulations, and changes that fall below the thresholds in 5.16.060(3) as determined by the Planning Director. A minor modification is a change to an approved plan or condition of approval that does not meet any of the thresholds for a major modification listed in Section 5.16.060(3).
ANALYSIS: As discussed in Section 1 of this staff report, the proposal will have no impacts to the neighboring properties and is located behind a warehouse placed to the east of the lease area. The site is not visible by any public right of way (except the antennae). Therefore, the proposed changes all fall below the thresholds of 5.16.060(3).

FINDINGS: As determined by the Community Development Director, the project does not meet the thresholds established in the Development Code Section 5.16.060(3) and is therefore a Minor Modification.
(7) Minor Modification Applications. An application for minor modification shall include an application form, filing fee, letter describing the modification, and site plan using the same plan format as in the original approval. The Planning Director may require other relevant information, as necessary, in evaluating the request.

ANALYSIS: All required materials were submitted.
FINDINGS: The requirements for the application were met and the application was deemed complete on April 1, 2024.
(8) Minor Modification Approval Criteria. The Planning Director, or the Planning Commission in the case of an appeal of a Type II decision, shall approve, deny, or approve with conditions an application for minor modification based on findings of compliance or noncompliance with the applicable requirements of the Development Code and the conditions of approval of the original decision.
ANALYSIS: The proposal is consistent with the original conditions of approval for the 2001 approval. The project does not comply with all development standards, however, that is irrelevant because Federal Regulations do not allow a local jurisdiction to deny a permit for a modification if the modification is less than substantial. See the analysis below.

FINDINGS: While the proposed project is not consistent with the City's development standards, the proposal is not considered a substantial change pursuant to federal regulations, therefore the City is not permitted to deny a permit based an inconsistency with the development standards.

## IV. STANDARDS

Chapter 3.27 regulates wireless communications facilities in Millersburg. As discussed below in detail, the project does not comply with all City regulations. The following analysis is a summary of only the applicable standards or items that required additional explanation.

## CHAPTER 3.27. WIRELESS COMMUNICATION FACILITIES

3.27.030 Review Procedures: Use Permits and Review Processes.

As noted in the table below, Wireless Communications Facilities are permitted by a variety of use permits and review processes, depending on the type or scope of development activity.

| Table 21 Wireless Communication Facility Permits |  |
| :--- | :--- |
| Wireless Communication Facility Permits | Type or Scope of <br> Development Activity |
| Type of Use Permit and <br> Review Process | Co-Location on an existing WCF <br> Outright Permitted other than Required Building <br> Permits |
| Administrative Review <br> (Type I) <br> the parameters of the zone requirements within <br> - Modifications to an existing WCF accessory <br> structure or equipment within the parameters of <br> the zone requirements |  |
| Conditional Use <br> (Type III) |  |
| Conditional Use and Variance <br> (Type III) |  |
| Notes: <br> 1. Height standards for each zone the standards of the zone <br> 2. The maximum permissible height, even though the variance process, is 150 feet for a WCF in <br> any zone. <br> 3. In the Industrial zones, the maximum permissible height for a WCF is 150 which does not require <br> a variance. |  |

ANALYSIS: As outlined in the table above, because the applicant is proposing to colocate antennae and build an additional equipment shelter, the review is a Type 1 review.

FINDINGS: The project is being processed as a Type I administrative review.

### 3.27.040 Siting Requirements.

(1) WCFs shall be sited in accordance with the following priorities. If the applicant proposes a facility of lower priority, the applicant shall demonstrate that each of the higher priorities has been considered and found to be not feasible.
(2) Priority \#1: Co-location on an existing WCF.
(3) Priority \#2: Use of an attached WCF.
(4) Priority \#3: Siting of a new Wireless Communications Tower (WCT), in a visually obscure location, using design techniques maximizing "Visual Compatibility Characteristics."
(5) Priority \#4: Siting of a new WCT in a visually prominent location (e.g., along arterials and collectors, on hills and ridges), using design techniques maximizing "Visual Compatibility Characteristics."
(6) Priority \#5: Siting of a WCT in a visually prominent location (e.g., along arterials and collectors, on hills and ridges), not employing design techniques maximizing "Visual Compatibility Characteristics."
(7) Exemptions: Wireless communications facilities for emergency services (police, fire, and emergency management) are exempt from the above requirements if the siting agency can demonstrate the need for an exemption based on public safety and welfare issues. The review authority may also exempt local, state, and federal facilities, as well as facilities owned and operated by federally licensed amateur radio station operators (i.e., "ham" radio operations).
ANALYSIS: The proposal is fully consistent with the highest priority, which is to co-locate.
FINDINGS: This standard is met.
3.27.050 Standards and Requirements.
(1) Code Compliance Requirements. All WCFs shall meet all requirements established by the provisions of this Code, other applicable City codes, and other applicable standards.
(2) State and Federal Requirements. All WCFs shall comply with all applicable federal (e.g., Federal Communication Commission and Federal Aviation Administration) and State standards.

ANALYSIS: As outlined in this staff report, the project does not meet all Millersburg Development Code requirements. The applicant has provided materials with the application showing full consistency with all Federal requirements.
FINDINGS: While the proposed project is not consistent with the City's development standards, the proposal is not considered a substantial change pursuant to federal regulations, therefore the City is not permitted to deny a permit based an inconsistency with the development standards.
(3) Height.
a. A WCF may not exceed the height standards of a zone, except where permitted through the variance process.
b. Except in the Industrial zones, the maximum permissible height (even through the variance process) is $\mathbf{1 5 0}$ feet for a WCF in any zone.
c. In the Industrial zones, the maximum permissible height for a WCF is 150 feet which does not require a variance.
d. The height of a WCF shall be measured as per building code standard procedures from the center of the base of the proposed facility to the topmost portion of the WCF (e.g., the tip of the highest antenna or other transmission or reception device).
e. Airport Overlay Zones: All lands within the airport overlay zones (e.g., approach surface, transitional zone) shall be subject to additional height restrictions and development standards.
ANALYSIS: The tower height is not changing. The existing tower is under 150 feet (the existing tower is 100 feet tall). The facility is located within the Airport Approach Area Overlay Zone (AAO). This was addressed during the approval of the project previously, and the height of the tower is not changing as a result of this proposal. The project is located within the horizontal surface zone. This requires the proposal to be under 372 feet above sea level. The site is 216 feet above sea level. ${ }^{1}$ If the tower is 100 feet tall, the total height for the project is 316 feet above sea level.
FINDINGS: This standard is met.

## (4) Co-Location.

a. New WCFs, if technically feasible, will be designed and constructed for at least three antennas/providers to co-locate on the facility and to allow antennas mounted at varying heights. At a minimum, WCFs up to 120 feet in height shall accommodate at least two facilities/providers.
b. A facility may be attached to any existing structure as long as the height of that structure is not increased by more than 10 feet and so long as it meets all relevant requirements of this Chapter, consistent with applicable building codes.
c. A free-standing WCF shall be approved only if the applicant demonstrates that it is not feasible to site the facility on an existing structure. The application shall contain documentation that alternative sites within a radius of least $2,000 \mathrm{ft}$ have been considered and are technologically unfeasible or unavailable. The application also must document why co-location is impractical on existing structures for one or more of the following reasons: structural support limitations; safety considerations; lack of available space; failure to meet service coverage area needs; or unreasonable economic constraints.
ANALYSIS: The proposal is to co-locate antennae on an existing tower. The new antennae will be added 5 feet lower than the existing antennae.
FINDINGS: These standards are met.
(5) Construction.

[^0]a. All facilities must meet the requirements of the Uniform Building Code (UBC), the International Building Code (IBC) and/or the Oregon Structural Specialty Code, and all other relevant and applicable building codes.
b. Noise-generating equipment shall be sound-buffered by means of baffling, barriers, or other suitable means to reduce the sound level measured at the property line to no more than 30 dBA above the level of ambient background noise when adjacent to residential uses and 45 dBA above the level of ambient background noise in other areas.
c. It is prohibited to attach any communications facility or portion thereof to a tree.
d. WCFs shall be set back at least $25 \%$ of the tower height from all property lines or shall meet the setbacks of the underlying zone, whichever is greater.
e. Design: Where possible new facilities will be located in such a manner that they blend in with the background around them, using techniques to ensure visual compatibility characteristics.
i. All new WCF towers shall be a monopole or lattice tower structure constructed out of metal or other nonflammable material. The height and mass of the structure shall not exceed that which is essential for its intended use and public safety.
ii. All accessory structures (i.e., vaults, equipment rooms, utilities, and equipment enclosures) shall be concealed, buffered, or screened with mature vegetation and/or sight obscuring fencing, shall be consistent with the underlying zone, or may be placed underground. Underground placement of equipment shelters is encouraged and should be considered in each case.
iii. WCFs shall be painted in a non-reflective color to match the existing or attached structure and/or to blend into the surrounding environment to the greatest extent possible as seen from abutting uses, roadways or other public ways. Alternative colors or treatments of the external surfaces of any and all components of a WCF may be approved through the conditional use process to minimize the visual impact of the facilities, and such approved alternatives shall become part of the conditions of approval.

ANALYSIS: The existing tower was approved in 2001 and constructed in 2003. The City Development Code requirements outlined above were adopted in 2019. The existing facility is consistent with some of the provisions above, specifically a, because building permits were issued for the tower, $b$, because it will generate no noise, and $c$, because no trees are used. However, the existing facility and the proposed modifications do not comply with d or e.
Item D requires the facility to be setback from the property line by $25 \%$ the height of the tower. The tower is 100 feet tall, so the facility must be set back at least 25 feet from the property line. The 'facility' includes the tower and all equipment shelters. As designed, the new equipment shelter does not comply with this requirement. The proposed new shelter is 12.5 feet from the property line. The tower pole itself is also considered part of the facility and the pole is only 21 feet from the property line, which also does not comply. The code explains that the setbacks from the zone could be used if they are
greater; however, they are not. There are no setbacks to the west of this lot, so $25 \%$ of the pole height is the appropriate standard to employ.
In this case, however, the inconstancy with the local development standards are irrelevant. The Federal Government has regulations that dictate when a local government may or may not deny a permit for a co-location or modification of a wireless communications facility permit.

First, Title 47, Chapter I, Subchapter A, Part 1, Subpart U, Section 1.6100(b) (7) explains the definition of a substantial change to an existing wireless communications facility:
(b)(7) Substantial change. A modification substantially changes the physical dimensions of an eligible support structure \{emphasis added\} if it meets any of the following criteria:
(iii) For any eligible support structure, it involves installation of more than the standard number of new equipment cabinets for the technology involved, but not to exceed four cabinets;
(iv) It entails any excavation or deployment outside of the current site, except that, for towers other than towers in the public rights-of-way, it entails any excavation or deployment of transmission equipment outside of the current site by more than 30 feet in any direction. The site boundary from which the 30 feet is measured excludes any access or utility easements currently related to the site.

Second, the Federal regulations go on to explain that if the changes are not substantial the local government cannot deny a modification request:
(c) Review of applications. A State or local government may not deny and shall approve any eligible facilities request for modification of an eligible support structure that does not substantially change the physical dimensions of such structure.

It should be noted that the term 'eligible support structure' is confusing in this context. The definition of substantial change in section (b)(7) explains that the term 'support structure' also includes site and cabinet changes.

To explain further, see the structure of the definitions section in (b)(7). The introduction to the definition of substantial change in section (b)(7) explains that a substantial change to a 'support structure' includes the criteria that follow the semicolon. The proceeding criteria includes 1) the numbers of equipment cabinets and 2) the excavation and deployment of the site. An analysis of each of these is detailed below.

First, the definition of substantial change includes a standard for the number of cabinets within the site. Criteria iii explains that a change is substantial if the applicant installs more than the standard number of cabinets on the site. The text explains that the standard number of cabinets is four. The site currently has two cabinets. The applicant is proposing to add a third. Thus, the addition of another equipment cabinet, which is considered a support structure, is not considered a substantial change. Again, this is critical to the review because if the proposal is not a substantial change, the City cannot deny the proposal.

Second, for purposes of this review staff considers the 'excavation and deployment' to include the construction of new equipment shelters, and staff considers the 'site' to mean the lease area. Therefore, because the proposed modifications are entirely
within the lease area, they do not trigger the criteria listed in the Federal regulations, and are therefore not a substantial change and the City of Millersburg does not have the ability to deny the permit based on any of these proposed changes.
In order to be clear, the following facts are established:

- The modifications proposed by the applicant are not considered substantial changes because:
- The proposed modifications do not exceed 4 equipment cabinets on the site (the applicant is proposing the third).
- All of the proposed modifications are within the existing lease area.
- Federal Regulations do not allow a local government to deny a permit if the proposed modification to an existing, approved communications facility are not substantial changes.

FINDINGS: While the proposed project is not consistent with the City's development standards, the proposal is not considered a substantial change pursuant to Federal Regulations, therefore the City is not permitted to deny a permit based an inconsistency with the development standards.
(6) Landscaping/Screening. All ground-level facilities associated with a WCF shall be landscaped and/or screened in accordance with the provisions of Article III of this Code. The facilities must be fully screened before operations can begin.

ANALYSIS: Screening is required when visible from residential areas. This site is not visible from any residential areas.
FINDINGS: This standard does not apply.
(7) Lighting. No lighting shall be permitted on a WCF except as required for security and as required by the Federal Aviation Administration.

ANALYSIS: No additional lighting is proposed.
FINDINGS: This standard is met.
(8) Location.
a. No communications facility shall be installed on an exposed ridge line unless it blends with the surrounding existing natural and man-made environment in such a manner as to be visually compatible with the environment.
b. No communication facility shall be installed within $\mathbf{2 5 0}$ feet of a residential zone.

ANALYSIS: The project is not on a ridge, it is located behind a warehouse facility. The project is located within 250 feet of a residentially zoned area, however, as stated above, Federal Code Title 47, Chapter I, Subchapter A, Part 1, Subpart U, Section 1.6100(c) explains that a local government cannot deny a request for modification of facility if it is deemed to be a less than substantial change, which this is.

FINDINGS: While the proposed project is not consistent with the City's development standards, the proposal is not considered a substantial change pursuant to federal regulations, therefore the City is not permitted to deny a permit based an inconsistency with the development standards.
(9) Signs. Signs shall comply with the requirements set forth in this Code.

ANALYSIS: No additional signage is proposed.
FINDINGS: This standard does not apply.
(10) Twenty-Four Hour Emergency Contact Information. As part of the submittal requirements, all owners of WCFs shall provide 24 -hour contact information to the City so as to facilitate emergency response. Such information must be kept current and on file with the City, Sheriff's Office, and Fire District.

ANALYSIS: All required information has been provided.
FINDINGS: This standard is met.
(11) Facilities on City-Owned Property. When a proposed WCF would be sited on property owned by the City, the City shall exercise its zoning authority under this Code independently from and without regard to the terms and conditions of any agreement allowing the facility.

ANALYSIS: The lease area is not on City property.
FINDINGS: This standard does not apply.

## V. ACTION

Based on the above findings of fact, and the conditions of approval, the proposed project does not satisfy all the applicable City criteria and standards, however, Federal Regulations require a local government to approve any modifications to a communications facility if the change is not considered a substantial change as defined in the Federal Regulations. The proposed change is not considered a substantial change, therefore, the City approves the application.

## VI. CONDITIONS OF APPROVAL

## General Conditions:

1. This land use approval shall substantially comply with the submitted preliminary plans included as Exhibit A, except as indicated in the following conditions. Additional development or change of use may require a new development application and approval.
2. Copies of any required federal or state permits that may be required shall be filed in the Record File of this application.
3. This approval does not negate the need to obtain permits as appropriate from other local, state, or federal agencies, even if not specifically required by this decision.
4. Stormwater:
a. Obtain a 1200C Erosion Control Permit and a City of Millersburg Erosion Prevention and Sediment Control (EPSC) Permit for all the disturbed ground, both on and off site that is in excess of one acre. A minor EPSC Permit is required for disturbances under 1 acre. The applicant shall follow the latest requirements from DEQ for NPDES 1200-C Permit submittals.
b. Stormwater facilities shall be designed and constructed in accordance with the City of Millersburg Engineering Standards. A grading permit is required for earthwork in excess of 50 cubic yards; a storm drainage report and grading plan shall be submitted for review. A final grading and stormwater inspection will be required prior to issuance of a certificate of occupancy.

## Prior to Grading:

5. The applicant must obtain a City of Millersburg Erosion Control Permit and Grading Permit prior to construction.
6. Stormwater:

- Obtain a 1200C Erosion Control Permit and a City of Millersburg Erosion Prevention and Sediment Control (EPSC) Permit for all the disturbed ground, both on and off site that is in excess of one acre. A minor EPSC Permit is required for disturbances under 1 acre. The applicant shall follow the latest requirements from DEQ for NPDES 1200-C Permit submittals.
- Stormwater facilities shall be designed and constructed in accordance with the City of Millersburg Engineering Standards. A City of Millersburg Grading Permit is required for this work.


## VII. NOTICES TO THE APPLICANT

The applicant should also be aware of the following standards and processes that are required for development. These are not part of the decision on this land use case and are provided as a courtesy to the applicant. Please contact City Hall with any questions.

1. Compliance with the Conditions of Approval is the responsibility of the developer or its successor in interest.
2. Dust shall be controlled within the development during construction and shall not be permitted to drift onto adjacent properties.
3. This approval is valid for a period of two (2) years from the date of the decision notice. Extensions may be granted by the City as afforded by the Millersburg Development Code.
4. The continual operation of the property shall comply with the applicable requirements of the Millersburg Development Code.
5. Noise shall be kept at the minimum level possible during construction. The developer shall agree to aggressively ensure that all vehicles working in the development shall have adequate and fully functioning sound suppression devices installed and maintained at all times.
6. All construction sites shall be maintained in a clean and sanitary condition at all times. Construction debris includes food and drink waste. All waste shall be contained on-site in proper containers or construction fencing enclosures and shall leave the construction site in proper disposal containers. Failure to comply with this condition may result in a "Stop Work" order until deficiencies have been corrected to the satisfaction of the City.

## VIII. EXHIBITS

A. Applicant's Site and development plans


## AMERICANTOWER ${ }^{\ominus}$ ATC SITE NAME：MILLERSBURG1 OR V600900d： y gewnn ヨlls ヨาIgow－1 SITE ADDRESS： 3025 KATHRYN ST <br> SISt－IZEL6 YO＇XNV97V

T－MOBILE COVERAGE STRATEGY COLLOCATION PLAN
dVW 人LINIOI＾

ㅂIUMIMIMI





GROUNDING DETALLS \＆ELECTRICAL SCHEMATIC
GROUNDING DETALLS

$$
\begin{gathered}
\text { GROUNDING DETALLS } \\
\hline \text { PANEL SCHEDULE \& ONE-LINE DIAGRAM }
\end{gathered}
$$

SUPPLEMENTAL
$\sqrt{2}$
＿6x24 CONFIGURATION


56790EAH＿SR T 6x24 CONFIGURATION







PROJECT TEAM

| WER onver | Applca |
| :---: | :---: |
| （tameran Tower | T－Mobl |
|  |  |
| ENGNER | ז．пове |
|  |  |
| （orssionas |  |
|  |  |
| egrromne | plannmg aptlcant： |
| vanaton |  |
|  |  |

$$
\begin{aligned}
& \text { PROJECT NOTES }
\end{aligned}
$$











| crer |
| :---: |


(2) PROPOSED TOWER ELEVATION
(園)



|  |
| :---: |

(2) ATEMM Scheoule




(1) PROPOSED H-FRAME DETAIL

[^1]







|  |  |
| :---: | :---: |
|  | IGNMERM protessowns <br> 326 TRYON ROAD <br> EGH，NC $27003 \cdot 3530$ <br> FICE： $19996661-6531$ <br> ww．tegocoup．net |
|  |  |
|  | CITE NUMBER <br> 413487 <br> tc site name： <br> ERSBURG1 OR <br> obile site name： <br> G WATER－ATC <br> ITE ADDRESS： <br> 25 KATHRYN ST |
|  |  |
| －－Mobile－ |  |
| DATE DRAMN： | 0130124 |
| ATC Job No： | 145483888 |
| CUSTOMER NAME： <br> customer in： | T TALING WATR－ATC |
| PANEL SCHEDULE \＆ ONE－LINE DIAGRAM |  |
| $\begin{aligned} & \text { SHEETNUN } \\ & \text { E-6 } \end{aligned}$ | Revysons： |



225A PPC PANEL WITH SEPARATE
 PROPOSED NORTHERN
TECHOLOGIES PPC CABINET PROPOSED CAM－LOK GENERATOR
PLUG PRE－WRED BY MANUFACTURER MECHANICALY INTERLOCKED
BREAKERS FORUTLITY AND
TEMPORARY GENERATOR POWER


| EXCEPTION CONDUIT USE TABLE |  |
| :---: | :---: |
| Location | USE CASE EXAMPLE |
| when used with watertight HUBS ONLY | BETWEEN EQUIPMENT AND BATTERY CABINET OR EQUIPMENT TO EQUIPMENT CABINETS FOR INTER CABINET CONNECTION |
| Above ground | MAT BE USED AS A LOWER COST ALTERNATIVE TO MEALLIC RMC，MUST MEET OR EXCEED FEDERAL SPEC THE USE OF EITHER ALUMINUM OR GALVANIZED FITTING |

（3）CONDUIT USE TABLES


| EXX |  |  |  |
| :---: | :---: | :---: | :---: |
| CONDUIT <br> TYPE | USE CASE |  |  |
| EMT <br> （NOT PREFERRED） | OUTDOOR DC， <br> COMM | OUTDOOR WHEN |  |
| RMC <br> NONMEALLIC <br> （ALUMINUM） | OUTDOORINDOOR <br> PERNEC <br> GUIDLINES | AB |  |

r－$-7 \overline{\text { WVYOVIO ヨNIT－ヨNO }}$





| Proposed RAN Equipment |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Template: 56790EBH_SR_T_6x24 |  |  |  |  |
| Enclosure | 1 | 2 | 3 | 4 |
| Enclosure Type | Tower Top Mount (Nokia) | Purcell HPL3. 1 600A Site Support Cabinet | Ancillary Equipment (Nokia) | $\begin{aligned} & \begin{array}{l} \text { Purcell LB3 Battery Cabinet (4 } \\ \text { strings) } \end{array} \\ & \hline \end{aligned}$ |
| Radio |  |  |  |  |
| Baseband |  |  |  |  |
| Baseband <br> Submodule |  |  |  |  |
| Baseband Subrack |  |  |  |  |
| Transport System |  | (CSR IXRe V2 (Gen2) |  |  |
| Hybrid Cable System |  |  | Hybrid Trunk 6/24 4AWG 40m (x22) |  |
| RAN Scope of Wo |  |  |  |  |
|  | egional AHLOB <br> with Purcell HPL3. 1 <br> ster \& SPD tray <br> upated <br> pdated (2) HCS $6 \times 24$ added. R <br> IG RRU <br> 3 LB3 with 2 AMIAs <br> RFDS to reflect Phase4 desig d RFDS to reflect Purcell HPL3 d RFDS to reflect Phase 2Y De d to Phase 2Y design. | ig updated to EAH template. Image updren <br> s per new guidelines. <br> inets here <br> er new guidelines. | ated. |  |









\section*{| MANUFACTURER: NOKIA |
| :--- |
| MODEL: DRR-E |
| DINENESONE: $17.255^{*} 10.0 \times 1.75^{\circ}$ |
| WEIGHT: TED |}


(1) CSRIXRE DETAIL





| Charles Part \# | Overall Dimensions | RU | Mounting Rails | Equipment Chamber Door | Equip. Chamber Dimensions | Battery Chamber Dimensions | Handoff Chamber Dimensions | $\begin{aligned} & \text { Load } \\ & \text { Center } \end{aligned}$ | Thermal Specs | Integrated Power | $\begin{array}{\|c\|} \text { Weight } \\ \text { Empty (Ibs.) } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CUBE-RL1003-A | 26x22 $\times 20$ | 14 | 19" Fixed Rail | Front | $26 \times 22 \times 20$ | - | - | None | 580 W 24 V DC HX | - | 90 |
| CUBE-RL1003A-A | 26x22x20 | 14 | 19" Fixed Rail | Front | 26x22x20 | - | - | None | 580 W 48 V DC HX | - | 90 |
| CUBE-RL1003B-A | 26x22x20 | 14 | 19" Fixed Rail | Front | 26x22x20 | - | - | None | None | - | 75 |
| CUBE-RL1003C-A | 26x22x20 | 14 | 19" Fixed Rail | Front | 26x22x20 | - | - | None | 580W 120VAC HX | - | 90 |
| CUBE-RL1003D-A | 26x22x20 | 14 | 19" Fixed Rail | Front | 26x22x20 | - | - | None | 580W 24VDC HX | - | 90 |
| CUBE-RL1003E-A | 26x22x20 | 14 | 19" Fixed Rail | Front | 26x22x20 | - | - | None | 2 K BTU HVAC | - | 105 |
| CUBE-RL1003VF-A | 26x22x20 | 14 | 19" Fixed Rail | Front | 26x22x20 | - | - | None | Vented with Fans | - | 105 |
| CUBE-RL11411AN1 | 26x22x20 | 14 | 19" Fixed Rail | Front | 26x22x20 | - | - | None | 580 W 48 V DC HX | - | 90 |
| CUBE-RL11411CN1 | 26x22x20 | 14 | 19" Fixed Rail | Front | 26x22x20 | - | - | None | 580 W 24V DC HX | - | 90 |
| CUBE-RL11411DN1 | 26x22x20 | 14 | 19" Fixed Rail | Front | 26x22x20 | - | - | None | 750 W 48 V DC HX | - | 105 |

For additional product information, please visit www.charlesindustries.com





(1) PROPOSED PLATFORM MOUNT DETALL


(1) PROPOSED CANOPY DETAIL

# Non-Ionizing Electromagnetic Radiation (NIER) Study 

Site Number:<br>413487<br>Site Name:<br>Millersburg 1 OR<br>Location:<br>Albany, Oregon<br>Tenants:<br>T-Mobile, \& Verizon Wireless<br>Prepared For:<br>American Tower, Inc.<br>Woburn, Massachusetts<br>December 20 ${ }^{\text {th }}, 2023$<br>114781 P-414869

Prepared By:
Adam Carlson MS, CBRE, CPI
Program Manager RF Design \& Service
Tower Engineering Professionals

## Contents

DISCLAIMER NOTICE ..... 3
INTRODUCTION ..... 4
SITE AND FACILITY CONSIDERATIONS ..... 4
POWER DENSITY CALCULATIONS ..... 4
SITE MITIGATION \& CONTROL ..... 5
COMPLIANCE DETERMINATION ..... 5
APPENDIX 1 SITE PHOTOS ..... 6
APPENDIX 2 ANTENNA INVENTORY ..... 7
APPENDIX 3.1 MPE LIMIT STUDY ..... 8
APPENDIX 3.2 MPE LIMIT STUDY ..... 9
APPENDIX 4 BARRIER \& SIGN TYPES ..... 9
APPENDIX 5 INFORMATION PERTAINING TO MPE STUDIES ..... 10
APPENDIX 6 MPE STANDARDS METHODOLOGY ..... 12

## Disclaimer Notice

This work is based upon our best interpretation of available information. However, these data and their interpretation are constantly changing. Therefore, we do not warrant that any undertaking based on this report will be successful, or that others will not require further research or actions in support of this proposal or future undertaking. In the event of errors, our liability is strictly limited to the replacement of this document with a corrected one. Liability for consequential damages is specifically denied. Any use of this document constitutes an agreement to hold Tower Engineering Professionals and its employees harmless and indemnify it for all liability, claims, demands, and litigation expenses and attorney's fees arising out of such use.

Work product documents released prior to account settlement remain the sole property of Tower Engineering Professionals and must be returned on demand. Underlying work notes and data relating to this document remain the property of Tower Engineering Professionals. This document shall not be reproduced in whole or part without the permission of Tower Engineering Professionals. Any dispute hereunder shall be adjudicated in North Carolina. Any use or retention of this document constitutes acceptance of these terms, the entire work product, and all charges associated therewith.

COPYRIGHT © 2023 BY
TOWER ENGINEERING PROFESSIONALS
RALIEGH, NORTH CAROLINA

RF Design and Services
326 Tryon Road

# Non-Ionizing Electromagnetic Radiation (NIER) Study 

413487 Millersburg 1 OR
Albany, Oregon

## INTRODUCTION

Tower Engineering Professionals RF Design \& Services Division (TEP-RF) of Raleigh, North Carolina, has been retained by American Tower, Inc. (ATC), of Woburn, Massachusetts to evaluate the RF emissions compared to the Maximum Permissible Exposure (MPE) limit for facilities at this location. This evaluation uses compliance standards as outlined in Federal Communications Commission (FCC) document OET-65.

## SITE AND FACILITY CONSIDERATIONS

Site 413487 Millersburg 1 OR is located at 3025 Kathryn St., in Albany, Oregon at coordinates 44.645446, -123.067525 . The support structure is a 101' monopole. An aerial view of the tower can be found in Appendix 1, Site Photos. The tenants are T-Mobile (T-Mobile) \& Verizon Wireless (VZW). A table listing all antennae and effective radiated power (ERP) levels that were used in this study may be found in Appendix 2, Antenna Inventory.

## POWER DENSITY CALCULATIONS

Power densities were calculated based on FCC MPE limits for both General Population/Uncontrolled and Occupational/Controlled environments.

For the purpose of this study, a radius of $100^{\prime}$ from the base of the tower with a height of $6^{\prime}$ above ground level was used, beyond 100 the MPE levels become di minimus. This study utilized FCC recognized and accepted software programs using the maximum ERP levels for the antenna models provided by ATC. Diagrams depicting the predicted spatial average power density level at any specific location may be found in Appendix 3, MPE Limit Study. A discussion regarding the FCC limits may be found in Appendix 4, Information Pertaining to MPE Studies. Study methodology describing Non-ionizing Radiation Prediction Models used in this study may be found in Appendix 5, MPE Standards Methodology.

All data used in this study was collected from one or more of the following sources:

- ATC furnished data and does not include other unidentified communication facilities.
- Load List at 413487 MILLERSBURG 1 OR.RF NIER Study 12/01/23.
- Carrier standard configurations.
- Empirical data collected by TEP.


## SITE MITIGATION \& CONTROL

In order to comply with FCC, tenant, \& ATC requirements, TEP recommends the placement of signage at the base of the tower and all compound access points to alert workers of potential exposure to RF fields while working on or near the antennae.

TEP recommends that all personnel working on this tower be trained in RF safety procedures and carry a personal RF monitor at all times.

## COMPLIANCE DETERMINATION

This installation $\underline{\mathbf{S}}$ in compliance with current FCC MPE limits as described in FCC OET-65.

APPENDIX 1 Site Photos


Aerial View of Site

RF Design and Services<br>326 Tryon Road<br>Raleigh, North Carolina 27603

(612) 965-8225

WWW.TEPGROUP.NET

## Appendix 2 Antenna Inventory

| 413487 Millersburg 1 OR |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Antenna Inventory |  |  |  |  |  |  |  |
| Antenna <br> \# | Carrier | Antenna Manufacturer | Antenna Model | Frequency Band (MHz) | Azmiuth $\left({ }^{\circ}\right)$ | Effective Radiated Power (W) | Radiation Center (ft) |
| 1 | Verizon | Ericsson | Radio 4480 | 3500-3700 | 020 | 243 | 98.0 |
| 2 | Verizon | Ericsson | Radio 4480 | 3500-3700 | 140 | 243 | 98.0 |
| 3 | Verizon | Ericsson | Radio 4480 | 3500-3700 | 250 | 243 | 98.0 |
| 4 | Verizon | Commscope | NHH-65B-R2B | 700/800/1900/2100 | 100 | 48843 | 98.0 |
| 5 | Verizon | Commscope | NHH-65B-R2B | 700/800/1900/2100 | 180 | 48843 | 98.0 |
| 6 | Verizon | Commscope | NHH-65B-R2B | 700/800/1900/2100 | 260 | 48843 | 98.0 |
| 7 | Verizon | Antel | QXW-458X4516XBF | 800 | 150 | 23119 | 98.0 |
| 8 | Verizon | Antel | QxW-458X4516XBF | 800 | 235 | 23119 | 98.0 |
| 9 | Verizon | Ericsson | Air 6449 | 3700-3900 | 020 | 71639 | 98.0 |
| 10 | Verizon | Ericsson | Air 6449 | 3700-3900 | 140 | 71639 | 98.0 |
| 11 | Verizon | Ericsson | Air 6449 | 3700-3900 | 250 | 71639 | 98.0 |
| 12 | Verizon | Commscope | NHH-65B-R2B | 700/800/1900/2100 | 025 | 48843 | 98.0 |
| 13 | Verizon | Commscope | NHH-65B-R2B | 700/800/1900/2100 | 025 | 48843 | 98.0 |
| 14 | Verizon | Antel | BXA-70080-8CF | 800 | 020 | 15310 | 98.0 |
| 15 | Verizon | Commscope | NHH-65B-R2B | 700/800/1900/2100 | 085 | 48843 | 97.8 |
| 16 | Verizon | Commscope | NHH-65B-R2B | 700/800/1900/2100 | 261 | 48843 | 97.8 |
| 17 | Verizon | Commscope | NHH-65B-R2B | 700/800/1900/2100 | 260 | 48843 | 97.8 |
| 18 | T-Mobile | Nokia | AEHC | 2500-2700 | 010 | 34358 | 85.0 |
| 19 | T-Mobile | Nokia | AEHC | 2500-2700 | 120 | 34358 | 85.0 |
| 20 | T-Mobile | Nokia | AEHC | 2500-2700 | 240 | 34358 | 85.0 |
| 21 | T-Mobile | Commscope | FVV-65C-r3-V1 | 600/700/1900/2100 | 010 | 33126 | 85.0 |
| 22 | T-Mobile | Commscope | FVV-65C-r3-V1 | 600/700/1900/2100 | 230 | 33126 | 85.0 |
| 23 | T-Mobile | Commscope | FVV-65C-r3-V1 | 600/700/1900/2100 | 240 | 33126 | 85.0 |

## Appendix 3.1 MPE Limit Study



| Maximum Power Density (@20'): | $0.028 \mathrm{~mW} / \mathrm{cm}^{2}$ |
| ---: | :---: |
| General Population MPE (@20'): | $0.4186 \%$ |
| Occupational MPE (@20'): | $0.0837 \%$ |

## Appendix 3.2 MPE Limit Study



326 Tryon Road

## Appendix 4 Information Pertaining to MPE Studies

In 1985, the FCC first adopted guidelines to be used for evaluating human exposure to RF emissions. The FCC revised and updated these guidelines on August 1, 1996, as a result of a rule-making proceeding initiated in 1993. The new guidelines incorporate limits for Maximum Permissible Exposure (MPE) in terms of electric and magnetic field strength and power density for transmitters operating at frequencies between 300 kHz and 100 GHz .

The FCC's MPE limits are based on exposure limits recommended by the National Council on Radiation Protection and Measurements (NCRP), and, over a wide range of frequencies, the exposure limits were developed by the Institute of Electrical and Electronics Engineers, Inc., (IEEE) and adopted by the American National Standards Institute (ANSI) to replace the 1982 ANSI guidelines. Limits for localized absorption are based on recommendations of both ANSI/IEEE and NCRP.

The FCC's limits, and the NCRP and ANSI/IEEE limits on which they are based, are derived from exposure criteria quantified in terms of specific absorption rate (SAR). The basis for these limits is a whole-body averaged SAR threshold level of 4 watts per kilogram ( $4 \mathrm{~W} / \mathrm{kg}$ ), as averaged over the entire mass of the body, above which expert organizations have determined that potentially hazardous exposures may occur. The MPE limits are derived by incorporating safety factors that lead, in some cases, to limits that are more conservative than the limits originally adopted by the FCC in 1985. Where more conservative limits exist, they do not arise from a fundamental change in the RF safety criteria for whole-body averaged SAR, but from a precautionary desire to protect subgroups of the general population who, potentially, may be more at risk.

The FCC exposure limits are also based on data showing that the human body absorbs RF energy at some frequencies more efficiently than at others. The most restrictive limits occur in the frequency range of $30-300 \mathrm{MHz}$ where whole-body absorption of RF energy by human beings is most efficient. At other frequencies, whole-body absorption is less efficient, and consequently, the MPE limits are less restrictive.

RF Design and Services
326 Tryon Road

MPE limits are defined in terms of power density (units of milliwatts per centimeter squared: $\mathrm{mW} / \mathrm{cm}^{2}$ ), electric field strength (units of volts per meter: $\mathrm{V} / \mathrm{m}$ ) and magnetic field strength (units of amperes per meter: A/m). The far-field of a transmitting antenna is where the electric field vector ( E ), the magnetic field vector ( H ), and the direction of propagation can be considered to be all mutually orthogonal ("plane-wave" conditions).

Occupational/controlled exposure limits apply to situations in which persons are exposed as a consequence of their employment and in which those persons who are exposed have been made fully aware of the potential for exposure and can exercise control over their exposure. Occupational/controlled exposure limits also apply where exposure is of a transient nature as a result of incidental passage through a location where exposure levels may be above general population/uncontrolled limits (see below), as long as the exposed person has been made fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

General population/uncontrolled exposure limits apply to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Therefore, members of the general public would always be considered under this category when exposure is not employment-related, for example, in the case of a telecommunications tower that exposes persons in a nearby residential area. Additional details can be found in FCC OET 65.

## Appendix 5 MPE Standards Methodology

This study predicts RF field strength and power density levels that emanate from communications system antennae. It considers all transmitter power levels (less filter and line losses) delivered to each active transmitting antenna at the communications site. Calculations are performed to determine power density and MPE levels for each antenna as well as composite levels from all antennas. The calculated levels are based on where a human (Observer) would be standing at various locations at the site. The point of interest where the MPE level is predicted is based on the height of the Observer.

Compliance with the FCC limits on RF emissions are determined by spatially averaging a person's exposure over the projected area of an adult human body, that is approximately six-feet or two-meters, as defined in the ANSI/IEEE C95.1 standard. The MPE limits are specified as time-averaged exposure limits. This means that exposure is averaged over an identifiable time interval. It is 30 minutes for the general population/uncontrolled RF environment and 6 minutes for the occupational/controlled RF environment. However, in the case of the general public, time averaging should not be applied because the general public is typically not aware of RF exposure, and they do not have control of their exposure time. Therefore, it should be assumed that any RF exposure to the general public will be continuous.

The FCC's limits for exposure at different frequencies are shown in the following Tables.

| Limits for Occupational/Controlled Exposure |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Frequency Range (MHz) | Electric Field <br> Strength (E) <br> (V/m) | Magnetic Field Strength (H) (A/m) | Power Density <br> (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Averaging <br> Time $\|E\|^{2}$, <br> $\|\mathrm{H}\|^{2}$ or $S$ <br> (minutes) |
| 0.3-3.0 | 614 | 1.63 | 100* | 6 |
| 3.0-30 | 1842/f | 4.89/f | 900/F ${ }^{2}$ | 6 |
| 30-300 | 61.4 | 0.163 | 1.0 | 6 |
| 300-1500 | -- | -- | f/300 | 6 |
| 1500-100,000 | -- | -- | 5 | 6 |
| frequency <br> = Plane-wav | lent power |  |  |  |

# RF Design and Services 

326 Tryon Road

Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

| Limits for General Population/Uncontrolled Exposure |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency Range <br> $(\mathrm{MHz})$ | Electric Field <br> Strength (E) (V/m) | Magnetic Field <br> Strength (H) (A/m) | Power Density (S) <br> $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ | Averaging Time <br> $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S <br> $($ minutes $)$ |  |
| $0.3-1.34$ | 614 | 1.63 | $100^{*}$ | 30 |  |
| $1.34-30$ | $824 / \mathrm{f}$ | $2.19 / \mathrm{f}$ | $180 / \mathrm{F}^{2}$ | 30 |  |
| $30-300$ | 27.5 | 0.073 | 0.2 | 30 |  |
| $300-1500$ | -- | - | $\mathrm{f} / 1500$ | 30 |  |
| $1500-100,000$ | -- | - | 1.0 | 30 |  |

$$
\begin{aligned}
& \text { f = frequency } \\
& \text { * = Plane-wave equivalent power density }
\end{aligned}
$$

General population/uncontrolled exposures apply in situations in which the general public may be exposed or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

It is important to understand that these limits apply cumulatively to all sources of RF emissions affecting a given area. For example, if several different communications system antennas occupy a shared facility such as a tower or rooftop, then the total exposure from all systems at the facility must be within compliance of the FCC guidelines.

The field strength emanating from an antenna can be estimated based on the characteristics of an antenna radiating in free space. There are basically two field areas associated with a radiating antenna. When close to the antenna, the region is known as the Near Field. Within this region, the characteristics of the RF fields are very complex, and the wave front is extremely curved. As you move further from the antenna, the wave front has less curvature and becomes planar. The wave front still has a curvature, but it appears to occupy a flat plane in space (plane-wave radiation). This region is known as the Far Field.

Two models are utilized to predict Near and Far field power densities. They are based on the formulae in FCC OET 65.

## Cylindrical Model (Near Field Predictions)

Spatially averaged plane-wave equivalent power densities parallel to the antenna may be estimated by dividing the antenna input power by the surface area of an imaginary cylinder surrounding the length of the radiating antenna. While the actual power density will vary along the height of the antenna, the average value along its length will closely follow the relation given by the following equation:

$$
S=P \div 2 \pi R L
$$

Where:
$S$ = Power Density
P = Total Power into antenna
$R=$ Distance from the antenna
$L=$ Antenna aperture length

For directional-type antennas, power densities can be estimated by dividing the input power by that portion of a cylindrical surface area corresponding to the angular beam width of the antenna. For example, for the case of a 120 -degree azimuthal beam width, the surface area should correspond to $1 / 3$ that of a full cylinder. This would increase the power density near the antenna by a factor of three over that for a purely omni-directional antenna. Mathematically, this can be represented by the following formula:

$$
S=\left(180 / \theta_{B W}\right) P \div \pi R L
$$

Where:
S = Power Density
$\theta_{\mathrm{BW}}=$ Beam width of antenna in degrees ( 3 dB half-power point)
$P=$ Total Power into antenna
$R=$ Distance from the antenna
L = Antenna aperture length

If the antenna is a 360-degree omni-directional antenna, this formula would be equivalent to the previous formula.

## Spherical Model (Far Field Predictions)

Spatially averaged plane-wave power densities in the Far Field of an antenna may be estimated by considering the additional factors of antenna gain and reflective waves that would contribute to exposure.

The radiation pattern of an antenna has developed in the Far Field region and the power gain needs to be considered in exposure predictions. Also, if the vertical radiation pattern of the antenna is considered, the exposure predictions would most likely be reduced significantly at ground level, resulting in a more realistic estimate of the actual exposure levels.

Additionally, to model a truly "worst case" prediction of exposure levels at or near a surface, such as at ground-level or on a rooftop, reflection off the surface of antenna radiation power can be assumed, resulting in a potential four-fold increase in power density.

These additional factors are considered, and the Far Field prediction model is determined by the following equation:

$$
S=E I R P \times R c \div 4 \pi R^{2}
$$

Where:
S = Power Density
EIRP = Effective Radiated Power from antenna
Rc = Reflection Coefficient (2.56)
$R=$ Distance from the antenna

The EIRP includes the antenna gain. If the antenna pattern is considered, the antenna gain is relative based on the horizontal and vertical pattern gain values at that particular location in space, on a rooftop or on the ground. However, it is recommended that the antenna radiation pattern characteristics not be considered to provide a conservative "worst case" prediction. This is the equation is utilized for the Far Field exposure predictions herein.

City of Millersburg
Community Development 4222 NE Old Salem Road Albany OR 973211

Subject: Type I administrative site development review modification: Collocation (Spectrum Act Exempt)
Site No: 413487 Millersburg1 OR PO06009A
Site Address: 3025 KATHRYN ST., ALBANY, OR 97321
Parcel \#: 11S03W04BC00201
Dear Community Development,
Infinigy is representing American Tower Corporation (ATC) regarding T-Mobile's collocation on an existing wireless telecommunications facility, referenced above.

TOWER SCOPE:

- INSTALL (1) RMQP-496-HK PLATFORM MOUNT W/ HANDRAIL KIT
- INSTALL (3) FFVV-65C-R3-V1 ANTENNAS
- INSTALL (3) AEHC ANTENNAS
- INSTALL (3) AHLOB RRHs
- INSTALL (3) AHFII RRHs
- INSTALL (2) 6/24 4AWG HYBRID TRUNKS (LENGTH: 40m)
- INSTALL (9) 15 ' FIBER JUMPERS

GROUND SCOPE:

- INSTALL (1) 10 FT X 15 FT CONCRETE PAD
- INSTALL (1) ICE BRIDGE
- INSTALL (1) 10' X 10' ICE CANOPY WITH (2) SITE LIGHTS AND GFI IN
- WEATHERPROOF HOUSING
- INSTALL (1) H-FRAME WITH (1) 225A PPC, (1) LEC CUBE, AND
- TIMER/SWITCH
- INSTALL (1) NEW METER NEXT TO EXISTING PACIFICORP METER
- INSTALL (1) PURCELL HPL3.1 600A SITE SUPPORT CABINET AND
- PURCELL LB3 BATTERY CABINET
- INSTALL (1) $2^{\prime \prime}$ CONDUIT FOR POWER
- INSTALL (1) $2^{\prime \prime}$ CONDUIT FOR FIBER
- INSTALL IN HPL3.1 600A:
- ASIA, (2) ASILs, (2) AMIAs, (3) ABIAs, (3) ABILs, (1) ABIO, AND
- CSR IXRE V2

RFDS VERSION: 1 DATE: 01/17/2024
There will be no change in the existing tower height and there will be no expansion of the existing compound.
Enclosed you will find:

- completed Type I Application,
- Letter of authorization with Land lease
- construction drawings with site plans,
- original land use approval
- original building permit
- NIER Report

Project valuation is $\$ 40,000$. Once you have processed the application and determine planning permit fee, please contact so that I may pay the fees over the phone or online with a credit card.

If you have any questions or need additional information, please let me know.
Thank you,

```
Vinh Dinh
m-(206)295-5926
vinhd@tepgroup.net
```


[^0]:    ${ }^{1}$ Found using https://www.freemaptools.com/elevation-finder.htm

[^1]:    ME NOTES:
    IF IT IT NEEES
    AN ADITION
    REQURED.
    PROPOSED UNISTRUTS TO BE FIELD CUT AND
    SHOULD NOT EXTEND MORE THAN 6 INCHES
    SPRAY ENDS OF UNIITRUT WITH COLD
    GALVANIIING SPRAY PAINT, ALLOW TO DR,
    THEN OOVER WITH RUBER PROTECTVE
    CAPS FOR SAFETY.
    UNISTRUT TO BE CUT FLUSH WITH NO SHARP
    OR JAGGED EDGES.
    ALL Proposed hardware to be mounted
    PER MANUFACTURERS SPECS.
    苼 $\qquad$ 3.
    4.
    5.

